ASSIGNMENT XII RELATIONS AND FUNCTIONS

- 1. Let * be a binary operation defined by a * b = 3a + 4b 2. Find 4*5.
- 2. Show that the relation R defined by R = { (a b): a b is divisible by 3, a, b € N } is an equivalence relation.
- 3. If f: R \rightarrow R defined by f (x) = $\frac{3x+5}{2}$ is an invertible function. Find f⁻¹.
- 4. If the function $f: R \to R$ is given by $f(x) = x^2 + 3x + 1$ and $g: R \to R$ is given By g(x) + 2x 3. Find $f \circ g$ and $g \circ f$.
- 5. If $f(x) = 27 x^3$ and $g(x) = x^{1/3}$. Find $g \circ f$.
- 6. Consider $f: R_+ [-5, \infty)$ given by $f(x) = 9x^2 + 6x 5$. Show that f is invertible .and also find f^{-1} .
- 7. Let A = N X N and * be a binary operation on A defined by (a b) * (cd) = (a + c, b + d). Show that * is commutative, associative. Also find the identity element foe * on A, if any.
- 8. Show that the relation S defined on the set $N \times N$ by (a b) S (c d) ---- a + d = b + c is an equivalence relation.
- State the reason for the relation R in the set { 1, 2, 3 } given by R = { (1 2), (21) } not to be transitive.
- 10. Consider the binary operation * on the set { 1, 2, 3, 4, ,5 } defined by a * b = minimum of a and b . write the operation table for *.
- 11.Prove that the relation R in the set { 5, 6, 7, 8, ,9 } given by R = { (a b) : | a b | is divisible by 2 } is an equivalence relation. Find all elements related to the element 6.
- 12.Let $f: W \to W$ be defined as f(x) = x 1 if x is odd, and f(x) = x + 1 if x is even. Show that f is invertible. Find the inverse of f.
- 13.Let N denote the set of all natural numbers and R be the relation on N X N defined by (a b) R (c d) iff ad (b + c) = bc (a + d). Show that r is an equivalence relation.
- 14.If f: R₊ -- [4, ∞) given by f(x) = x^2 + 4. Show that f is invertible .and also find f⁻¹.
- 15.If f: $R \rightarrow R$ defined by f(x) = 3x + 2. Find f(f(x)).